E nantioselective Photocyclization of N-Alkylfuran-2-carboxyanilides to trans-Dihydrofuran Derivatives in Inclusion Crystals with Optically Active Host Compounds Derived from Tartaric Acid

Fumio Toda,*, ${ }^{\dagger}$ Hisakazu Miyamoto, ${ }^{\dagger}$ Kazuyuki Kanemoto, ${ }^{\dagger}$ Kiyoaki Tanaka, ${ }^{\ddagger}$ Yukiko Takahashi,§ and Yasuyuki Takenaka§
Department of Applied Chemistry, F aculty of Engineering, Ehime University, Matsuyama, Ehime 790-8577, Department of Materials Sciences and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, and Department of Materials Science, Hokkaido University of Education at Hakodate, Hakodate, Hokkaido 040-8567, J apan

Received October 19, 1998

Abstract

The steric course of the photocyclization reaction of the title achiral compounds (1) to optically active trans-dihydrofuran derivatives (2) was controlled by carrying out the reaction in inclusion crystals (4) with optically active hosts (3) derived from tartaric acid. The mechanism of the enantioselective reaction of $\mathbf{1}$ in $\mathbf{4}$ was studied by X-ray structural analysis of $\mathbf{4}$. In some cases, the steric course of the photoreaction was different depending on whether $\mathbf{4}$ was prepared by recrystallization or by mixing of $\mathbf{1}$ and $\mathbf{3}$.

Although the very useful synthetic route to transdi hydrofuran derivatives (2) by photoreaction of the title carboamides (1) in MeOH has been established, the reaction gives rac-2 together with some other byproducts. ${ }^{1}$ To control the reaction to produce optically active $\mathbf{2}$ rather than both enantiomers, the photoreaction of $\mathbf{1}$ was carried out in an inclusion crystal with the optically active host compounds $(\mathbf{3})^{2}$ derived from tartaric acid. ${ }^{3}$

a: $\mathrm{R}_{2}=\mathrm{Me}_{2}$
b: $\mathrm{R}_{2}=-\left(\mathrm{CH}_{2}\right)_{4}-$
c: $\mathrm{R}_{2}=-\left(\mathrm{CH}_{2}\right)_{5}^{-}$
Although la did not form an inclusion crystal with 3ac, 1b-f formed inclusion crystals $\mathbf{4}$ in the ratios indicated

[^0]Table 1. Inclusion Compounds $\mathbf{4}$ of $\mathbf{3}$ and 1 Prepared by Recrystallization

host 3	guest 1	inclusion compd		
		4	host:guest	$\mathrm{mp}\left({ }^{\circ} \mathrm{C}\right)$
3a	1a	a		
3b	1a	a		
3c	1a	a		
3a	1b	a		
3b	1b	4bb	1:1	122-123
3c	1b	4cb	1:1	149-151
3a	1c	a		
3b	1c	a		
3c	1c	4cc	2:1	117-124
3a	1d	4ad	1:1	130-133
3b	1d	4bd	1:1	137-139
3c	1d	4cd	1:1	126-133
3a	1e	4ae	1:1	130-132
3b	1e	4be(1:1)	1:1	100-101
3b	1e	4be(2:1)	2:1	79-82
3c	1e	4ce(2:1)	2:1	112-115
3a	$1 f$	a		
3b	$1 f$	a		
3c	$1 f$	4cf	1:1	127-131

a Inclusion compound was not formed.
in Table 1. Irradiation of these powdered inclusion crystals 4 in a water suspension gave optically active $\mathbf{2 b}-\mathbf{f}$ in the chemical and optical yields summarized in Table 2.
In the case of $\mathbf{1 e}$, two kinds of inclusion compounds with the host $\mathbf{3 b} \mathbf{4} \mathbf{4 b e}(\mathbf{1}: \mathbf{1})$ and $\mathbf{4 b e}(\mathbf{2}: \mathbf{1})$, were formed with the different host:guest ratios indicated (Table 1). Interestingly, photolysis of $\mathbf{4 b e}(\mathbf{1 : 1)}$ and $\mathbf{4 b e}(\mathbf{2 : 1)}$ gave $(-)-3 e$ and (+)-3e, respectively (Table 2). This is the first example of the formation of different enantiomers from a prochiral guest included by the same host in different ratios. To clarify the reasons, the crystal structures of 4be(1:1) and $\mathbf{4 b e}(\mathbf{2 : 1)}$ were studied by X-ray analysis. It was found that le was arranged in a chiral form in 4be(1:1). The structure of the guest molecule $\mathbf{l e}$ is shown in Figure 1. C38 and N lie almost on the mean plane of the furan ring, and the distances between these atoms and the plane are less than $0.06 \AA$. 06 and C39 lie apart

Figure 1. ORTEP stereodrawing of the crystal structure of guest molecule $\mathbf{1 e}$ in $\mathbf{4 b e}(\mathbf{1}: \mathbf{1})$.
b

b

Figure 2. ORTEP stereodrawing of the crystal structure of $\mathbf{4 b e}(\mathbf{1}: \mathbf{1})$ projected onto the crystallographic ab plane.

Table 2. Photoreaction of 4 Prepared by Recrystallization

inclusion compds	irradiation time (h)	product		
		2	yield (\%) ${ }^{\text {b }}$	optical purity (\% ee)
4bb	40	$(-)-2 \mathrm{~b}$	25	8
4cb	a			
4cc	120	(+)-2c	41	99
4ad	a			
4bd	a			
4cd	143	(+)-2d	16	52
4ae	96	$(+)-2 \mathbf{e}$	20	93
4be(1:1)	77	$(-)-2 e$	50	96
4be(2:1)	48	(+)-2e	86	98
4ce(1:1)	50	$(+)-2 e$	77	98
4cf	120	$(-)-2 f$	72	98

${ }^{a}$ No reaction occurred. ${ }^{\mathrm{b}}$ Other product was not determined.
from the plane to the C43 side about $0.18 \AA$, whereas C42 is apart on the opposite side about $0.2 \AA$. The interatomic bond angles are C38-N-C39 = 119.7(3), $\mathrm{C} 39-\mathrm{N}-\mathrm{C} 42=116.4(3)$, and $\mathrm{C} 42-\mathrm{N}-\mathrm{C} 38=123.9$ (3) deg, respectively. The angle between the normals to the mean planes of the furan and phenyl groups is 82.3 deg. This slight indination from the rectangular is reflected in the difference between the interatomic distances of C35-C43 $=3.405(6)$ and C35-C47 $=3.260(7) \AA$ A , respectively. The crystal structure projected onto the crystallographic ab plane is shown in Figure 2. No hydrogen bond was seen. During the process of the solid-state photoreaction, C35 becomes bonded to C43 or C47. If C35
and C43 are involved, the (R, S) form of $\mathbf{2 e}$ is produced. On the other hand, the (S, R) form is created by the C35 and C47 connection. According to the reaction mechanism reported previously ${ }^{1}$ and the structure determined in this study, the photoreaction is thought to be initiated by the rotation of the phenyl group around the $\mathrm{N}-\mathrm{C} 42$ bond. Therefore, the environment in the vicinity of the phenyl group was examined precisely. The structure around the phenyl group is shown stereographically in Figure 3, which is the projection in the direction from C45 to C42 with the horizontal axis along C43-C47. If the phenyl group rotates to make a $\mathrm{C} 35-\mathrm{C} 43$ bond, H atoms bonded to C25 and C30 hinder the rotation. On the other hand, if the phenyl group rotates to the opposite direction to make a C35-C47 bond, although there is a slight interference from the H atom bonded to C10, there is enough space in the upper right region in Figure 3. So it seems easier for the phenyl group to rotate this way than the former. Furthermore, the initial distance of C35C 47 is shorter than that of C35-C43 by $0.145 \AA$. It can be concluded that le is arranged in a chiral form in 4be(1:1) to produce the (S,R)-(-) form by the [4 + 2] conrotatory photocyclization reaction between the furan and phenyl rings. Once the reaction is complete on the center molecule in Figure 3, the reaction of the left molecule is accelerated by the vacancy of C43 of the center molecule, and C43 of the right molecule is pushed by the steric repulsion, which promotes the further

Figure 3. ORTEP stereodrawing of the crystal structure around the phenyl group in $\mathbf{4 b e}(\mathbf{1}: \mathbf{1})$.
reaction. Unfortunately, however, the molecular and crystal structure of 4be(2:1) was not studied, because no suitable crystal for analysis was obtained.

One other interesting finding in this study is that the complexation between $\mathbf{3}$ and $\mathbf{1}$ gave different inclusion compounds depending on whether the inclusion experiment is carried out by recrystallization from solvent or by mixing in the solid state. Finally, photolysis of these different inclusion compounds gave different photoreaction products.
Recrystallization of 1a and the same molar amount of 3b from ether gave a mixture of the two inclusion crystals 4be(1:1) and $\mathbf{4 b e} \mathbf{(2 : 1)}$ as colorless prisms and needles, respectively. These were separated mechanically. When a piece of $\mathbf{4 b e}(\mathbf{1}: \mathbf{1})$ crystal is added as a seed crystal during the inclusion complexation of la and the same molar amount of 3b, 4be(1:1) was obtained in a large quantity. Contrarily, when a piece of 4be(2:1) crystal is added as a seed crystal during the inclusion complexation of 1a and two molar amounts of $\mathbf{3 b}$, $\mathbf{4 b e}(\mathbf{2 : 1})$ was obtained in a large quantity.

Photolysis in a water suspension of $\mathbf{4 b e}(\mathbf{1 : 1})$ and 4be(2:1) gave (-)- and (+)-2e, respectively, in the chemical and optical yields indicated in Table 2. Chiral arrangement of the prochiral $\mathbf{l e}$ in $\mathbf{4 b e}(\mathbf{1}: \mathbf{1})$ was clarified by measurement of CD spectra in the solid state. ${ }^{3,4}$ A 1:1 inclusion compound ($\mathbf{6 b e}(\mathbf{1 : 1})$) prepared from the (S, R)-$(-)$ enantiomer of $\mathbf{3 b}(\mathbf{5 b})$ with $\mathbf{l e}$ showed the mirror imaged CD spectra (Figure 4). The molecular and crystal structure of $\mathbf{4 b e}(\mathbf{1}: \mathbf{1})$ were studied by X-ray analysis (Figures 1-3). The data suggest that the [4 +2] conrotatory photocyclization of $\mathbf{4 b e}(\mathbf{1}: 1)$ should give (S,R)-(-)-2e. Unfortunately, however, absolute configuration of the (S, R)-(-)-2e was not confirmed by X-ray analysis, because no suitable crystal for analysis was obtained. Contrarily, photolysis of 4be(2:1) gave (+)-2e. In 4be(2:1), 1e molecules are probably arranged in the form enantiomerically opposite to $\mathbf{l e}$ in $\mathbf{4 b e}(\mathbf{1}: \mathbf{1})$, and photocyclization of $\mathbf{l e}$ in $\mathbf{4 b e}(\mathbf{2}: \mathbf{1})$ should produce (R, S)-(+)2e. However, the structure of 4be(2:1) and (+)-2e was again not analyzed, because no suitable crystal for analysis was obtained. In the CD spectra in Nujol mull, 4be(2:1) and 6be(2:1) prepared from 5b and le showed mirror imaged absorptions (Figure 5). Similarly, photolysis of 4cc, 4cd, 4ce, and 4cf gave optically active photocyclization products of high optical purity in good

[^1]

Figure 4. $C D$ spectra of $\mathbf{4 b e}(\mathbf{1}: \mathbf{1})$ and $\mathbf{6 b e}(\mathbf{1}: \mathbf{1})$ in Nujol mull.
yield (Table 2). It is clear that the photoreaction of $\mathbf{1}$ in inclusion crystals with $\mathbf{3}$ or $\mathbf{5}$ is useful for the preparation of optically active dihydrofuran derivatives $\mathbf{2}$.

Inclusion complexation of $\mathbf{1}$ with $\mathbf{3}$ occurs also by mixing these in the solid state. For example, mixing powdered $\mathbf{3 a}$ and $\mathbf{l e}$, using an agate mortar and pestle or a planetary micro mill for 2 h , gave their 1:1 complex 4ae, which upon irradiation produced (+)-2e of high optical purity (Table 3). The data are comparable to those of the photoreaction of 4ae prepared by recrystallization from solvent (Table 3). Interestingly, however, both the 1:1 and $2: 1$ inclusion compounds 4be($\mathbf{1 : 1}$) and 4be(2:1) prepared by mixing of powdered $\mathbf{3 b}$ and $\mathbf{1 e}$ in $1: 1$ and 2:1 ratios, respectively, gave the same product (-)-2e upon irradiation, although the $\mathbf{4 b e}(\mathbf{1}: \mathbf{1})$ and $\mathbf{4 b e}(\mathbf{2 : 1})$ prepared by recrystallization gave the different products $(-)$ - and (+)-2e, respectively (Table 2). In the case of the inclusion complexation between $\mathbf{3 c}$ and $\mathbf{l e}$, the two inclusion compounds 4ce(1:1) and 4ce(2:1) were formed by mixing of $3 \mathbf{c}$ and $\mathbf{l e}$ in $1: 1$ and $2: 1$ ratios, respectively. Irradiation of $\mathbf{4 c e (1 : 1)}$ and $\mathbf{4 c e (2 : 1)}$ gave the same product (-)-2e (Table 3). However, recrystallization of 3 c and $\mathbf{1 e}$ from toluene gave only $\mathbf{4 c e}(\mathbf{2}: 1)$, and its photoreaction gave (+)-2e but not (-)-2e (Table 2). In the CD spectral measurement, 4ce(2:1) and 6ce(2:1)

Figure 5. CD spectra of 4be(2:1) and 6be(2:1) in Nujol mull.
Table 3. Photocyclization of $1 e$ in the Inclusion Compounds with 3 Prepared by Mixing ${ }^{\text {a }}$

inclusion compd	irradiation time (h)	$\mathbf{2 e}\left(\%\right.$ yield, ${ }^{\text {b }}$ $\%$ eee $)$
4ae	89	$(+)-\mathbf{2 e}(14,98)$
4be(1:1)	75	$(-)-\mathbf{2 e}(10,98)$
4be(2:1)	82	$(-)-\mathbf{2 e}(16,97)$
4ce(1:1)	40	$(-)-\mathbf{2 e}(16,49)$
4ce(2:1)	90	$(-)-\mathbf{2 e}(11,54)$

${ }^{\text {a }}$ Liquid paraffin added to the solid state. ${ }^{\mathrm{b}}$ Other product was not determined.

Figure 6. CD spectra of 4ce(2:1) and 6ce(2:1) in Nujol mull.
prepared by recrystallization of $\mathbf{5 c}$ and $\mathbf{1 e}$ in $2: 1$ ratio showed mirror imaged absorptions (Figure 6). Similarly,
4ce(1:1) and 6ce(1:1) prepared by mixing of $\mathbf{6 c}$ and $\mathbf{1 e}$ in 1:1 ratio showed mirror imaged CD spectral absorptions (Figure 7). Another example of the formation of different inclusion compounds, depending on experimental conditions, has been reported. For example, recrystallization from solvent and mixing in the solid state of 3c and N ,N-dimethylphenylglyoxamide gave different 1:1 inclusion compounds that gave (+)- and (-)- β-Iactam

Figure 7. CD spectra of $\mathbf{4 c e} \mathbf{(1 : 1)}$ and $\mathbf{6 c e}(\mathbf{1}: \mathbf{1})$ prepared by mixing in Nujol.
derivatives, respectively, by photolysis. ${ }^{5}$ In this case, however, the inclusion complexation of $\mathbf{1 e}$ with $\mathbf{3}$ is seriously affected by the experimental conditions. The reason for the difference is not clear, although this is one of the most important keys to resol ving molecular motion in the solid state.

I nclusion complexation of $\mathbf{1 e}$ with $\mathbf{3 c}$ in the solid state was followed by successive measurement of IR and CD spectra as Nujol mulls. In the IR spectral measurement, OH absorptions of 3c at 3529 and $3340 \mathrm{~cm}^{-1}$ decreased and a new one at $3275 \mathrm{~cm}^{-1}$ appeared. In addition, the $\mathrm{C}=\mathrm{O}$ absorption of $\mathbf{1 e}$ at $1634 \mathrm{~cm}^{-1}$ decreased, and a new one at $1637 \mathrm{~cm}^{-1}$ appeared as the compl exation proceeded (Figure 8). After 2 h , the inclusion complexation was complete, and only the new OH and $\mathrm{C}=\mathrm{O}$ absorptions remained (Figure 8). The complexation can also be followed by measurement of CD spectra in the Nujol mull. As the complexation of $\mathbf{1 e}$ with $\mathbf{3 c}$ and $\mathbf{5 c}$ proceeded, CD spectra due to a chiral arrangement of $\mathbf{l e}$ molecules increased and mirror imaged CD absorptions are completed (Figure 9).

Photoconversion of $\mathbf{4 b e}(\mathbf{1 : 1})$ and $\mathbf{6 b e}(\mathbf{1 : 1})$ prepared by mixing in the solid state was followed by successive measurement of CD spectra as Nujol mulls. In the CD spectra in Nujol, (-)- and (+)-2e showed mirror imaged absorptions (Figure 10). As shown in Figure 11, the CD spectra of $\mathbf{4 b e}(\mathbf{1 : 1})$ and $\mathbf{6 b e}(\mathbf{1 : 1})$ prepared by mixing in Nujol turned to (-)- and (+)-2e as the photoreaction proceeded.

Experimental Section

General Methods. Preparation of inclusion compounds (4) of $\mathbf{1}$ with the host $\mathbf{3 a}$ and $\mathbf{3 c}$ and with $\mathbf{3 b}$ was carried out by recrystallization from toluene and ether, respectively. The host: guest ratio of all inclusion compounds was determined by elemental analysis and measurement of ${ }^{1} \mathrm{H}$ NMR spectra. Photolysis in a water suspension at room temperature of the inclusion compounds was carried out through a Pyrex filter by using a 100-W high-pressure Hg Iamp. IR spectra were measured with an IR spectrometer, JASCO FT/IR-350, in Nujol mull. ${ }^{1} \mathrm{H}$ NMR spectra were recorded in CDCl_{3} on a J EOL J NM-LA300 (300 MHz) spectrometer. All $[\alpha]_{D}$ values were measured with a digital polarimeter, J ASCO DIP-1000S.
(5) Toda, F.; Miyamoto, H.; Kanemoto, K. J. Chem. Soc., Chem. Commun. 1995, 1719.

Figure 8. IR spectra of inclusion complexation of $\mathbf{1 e}$ with $\mathbf{3 c}$ in Nujol mull.

Figure 9. CD spectra of inclusion complexation of $\mathbf{l e}$ with 3c in Nujol mull.

Optical purities were determined by HPLC using hexane/2propanol (9:1) or hexanes/ethanol (95:5) solvent unless otherwise stated (flow rate, $1.0 \mathrm{~mL} / \mathrm{min}$) and a column ($0.46 \mathrm{~cm} \times$ 25 cm) containing the chiral solid phase, Chiralcel OD or Chiralpak AS, which are commercially available from Daicel Chemical Industries Ltd., Himeji, J apan.

Preparation of la-f. Compounds $\mathbf{l a}-\mathbf{f}$ were prepared by a literature procedure. ${ }^{1}$ Furan-2-carboxyanilide (1a) (col orless needles, mp $125-126^{\circ} \mathrm{C}$): IR (Nujol) $v_{\max } 1650 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$

Figure 10. CD spectra of (-)- and (+)-2e in Nujol mull.
NMR $\delta 6.56$ (s, HH), 7.20-7.66 (m, 6 H), 8.06 ($\mathrm{s}, 1 \mathrm{H}$). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{2}$: C, 70.58; H, 4.58; N, 7.48. Found: C, 70.52; H, 4.85; N, 7.22. N-Methylfuran-2-carboxyanilide (1b) (colorless prisms, mp $125-126^{\circ} \mathrm{C}$): IR (Nujol) $v_{\text {max }} 1638$ cm^{-1}; ${ }^{1 H}$ NMR $\delta 3.44$ (s, 3H), 5.42 (d, 1H), 6.19 (d, 1H), 7.207.41 (m, 6 H). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{2}$: C, 71.63; H, 5.51; N, 6.96. Found: C, 71.49; H, 5.68; N, 7.22. N-Ethylfuran-2carboxyanilide (1c) (colorless prisms, mp 126-127 ${ }^{\circ} \mathrm{C}$): IR (Nujol) $v_{\text {max }} 1627 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H}$ NMR $\delta 1.21$ (t, 1H), 3.91 (q, 2H),

Figure 11. Photoconversion of $\mathbf{4 b e}(\mathbf{1}: \mathbf{1})$ and $\mathbf{6 b e}(\mathbf{1}: \mathbf{1})$ to (-)and (+)-2e, respectively, by continuous measurements of CD spectra in Nujol mull, after (a) 0 min , (b) 2 min , and (c) 4 min of irradiation.
$5.71(d, 1 H), 6.18(q, 1 H), 7.18-7.42(m, 6 H)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{2}: \mathrm{C}, 72.54 ; \mathrm{H}, 6.09$; $\mathrm{N}, 6.51$. Found: C, 72.45 ; H, $6.23 ; \mathrm{N}, 6.51$. N -I sopropylfuran-2-carboxyanilide (1d) (col orless prisms, mp $114-115^{\circ} \mathrm{C}$): IR (Nujol) $v_{\max } 1631 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.11(\mathrm{~d}, 6 \mathrm{H}), 5.12(\mathrm{~m}, 1 \mathrm{H}), 5.36(\mathrm{~d}, 1 \mathrm{H}), 6.09(\mathrm{q}$, 1H), $7.28(t, 1 H), 7.12-7.33(m, 9 H)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15^{-}}$ NO_{2} : C, $73.34 ; \mathrm{H}, 6.59$; N, 6.11. Found: C, $73.42 ; \mathrm{H}, 6.67$; N, 6.13. N-Allylfuran-2-carboxyanilide (1e) (col orless prisms, $\mathrm{mp} 58-59^{\circ} \mathrm{C}$): IR (Nujol) $\nu_{\text {max }} 1634 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.11$ (d, $6 \mathrm{H}), 5.12(\mathrm{~m}, 1 \mathrm{H}), 5.36(\mathrm{~d}, 1 \mathrm{H}), 6.09(\mathrm{q}, 1 \mathrm{H}), 7.28(\mathrm{t}, 1 \mathrm{H}), 7.12-$ $7.33(\mathrm{~m}, 9 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2}: \mathrm{C}, 73.99 ; \mathrm{H}, 5.77$; N, 6.16. Found: C, 73.92; H, 5.98; N, 6.29. N-Benzylfuran-2-carboxyanilide (1f) (col orless prisms, mp 109-111 ${ }^{\circ} \mathrm{C}$): IR (Nujol) $v_{\text {max }} 1637 \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR $\delta 5.05(\mathrm{~s}, 2 \mathrm{H}), 5.71(\mathrm{~d}, 1 \mathrm{H})$, $6.18(\mathrm{q}, 1 \mathrm{H}), 7.02(\mathrm{q}, 1 \mathrm{H}), 7.26-7.33(\mathrm{~m}, 9 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{2}$: C, 77.96; H, 5.45; N, 5.05. Found: C, 77.86; H, 5.68; N, 5.22.

Preparation of Inclusion Compounds (4) by Recrystallization Method. When a solution of $\mathbf{3 b}(2.0 \mathrm{~g}, 4.0 \mathrm{mmol})$ and $\mathbf{1 b}(0.8 \mathrm{~g}, 4.0 \mathrm{mmol})$ in ether (20 mL) was kept at room temperature for 12 h , their 1:1 inclusion compound ($\mathbf{4 b b}$) was obtained as colorless plates ($2.1 \mathrm{~g}, 72 \%$ yield, $\mathrm{mp} 122-123$ ${ }^{\circ} \mathrm{C}$): IR (Nujol) $v_{\max } 3280$ and $1620 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{43} \mathrm{NO}_{6}: \mathrm{C}, 77.90 ; \mathrm{H}, 6.52 ; \mathrm{N}, 2.02$. Found: C, 78.16; H, $6.30 ; \mathrm{N}, 1.96$. By the same procedure, the following inclusion compounds were prepared. A 1:1 inclusion compound (4cb) (colorless needles, 76% yield, $\mathrm{mp} 149-151^{\circ} \mathrm{C}$): IR (Nujol) $\nu_{\text {max }}$ 3280, 3190, and $1620 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{46} \mathrm{H}_{45} \mathrm{NO}_{6}$: C , 78.05; H, 6.41; N, 1.98. Found: C, 77.91; H, 6.53; N, 1.99. A 2:1 inclusion compound (4cc) (col orless needles, 91% yield, mp $117-124^{\circ} \mathrm{C}$): IR (Nujol) $\nu_{\max } 3630,3400,3270$, and $1550 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{81} \mathrm{H}_{81} \mathrm{NO}_{10}$: C, 79.91; H, 6.65; N, 1.14. Found: C, 77.91; H, 6.87; N, 1.31. A 1:1 inclusion compound (4ad) (col orless needles, 71% yield, mp 130-133 ${ }^{\circ} \mathrm{C}$): IR (Nujol) $v_{\max } 3240$ and $1626 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{45} \mathrm{NO}_{6}$: C, 77.67; H, 6.52; N, 2.02. Found: C, 77.81; H, 6.57; N, 1.99. A $1: 1$ inclusion compound (4bd) (col orless needles, 79% yield, $\mathrm{mp} 137-139^{\circ} \mathrm{C}$): IR (Nujol) $v_{\max } 3247,3167$, and $1613 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{47} \mathrm{H}_{47} \mathrm{NO}_{6}$: C, 78.20; H, 6.56; $\mathrm{N}, 1.94$. Found: C, 78.27; H, 6.65; N, 1.91. A 1:1 inclusion compound (4cd) (col orless needles, 88% yield, $\mathrm{mp} 126-133^{\circ} \mathrm{C}$): IR (Nujol) $v_{\text {max }}$

3637, 3414, 3268, and $1550 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{48} \mathrm{H}_{49} \mathrm{NO}_{6}$: C, 78.34; H, 6.71; N, 1.90. Found: C, 77.81; H, 6.94; N, 1.68. A 1:1 inclusion compound (4ae) (col orless prisms, 61% yield, mp 130-132 ${ }^{\circ} \mathrm{C}$): IR (Nujol) $v_{\text {max }} 3200$ and $1625 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{49} \mathrm{H}_{41} \mathrm{NO}_{6}$: $\mathrm{C}, 77.90 ; \mathrm{H}, 6.24 ; \mathrm{N}, 2.02$. Found: C, 78.15; H, 6.41; N, 2.01. A 1:1 inclusion compound (4be(1:1)) (col orless prisms, 79% yield, $\mathrm{mp} 100-101^{\circ} \mathrm{C}$): IR (Nujol) $v_{\text {max }}$ 3222 and $1620 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{47} \mathrm{H}_{45} \mathrm{NO}_{6}$: $\mathrm{C}, 78.42 ; \mathrm{H}$, $6.30 ;$ N , 1.95. Found: C, 78.27 ; H, 6.59; N, 1.78. A 2:1 inclusion compound (4be(2:1)) (col orless needles, 83% yield, mp 79-82 ${ }^{\circ} \mathrm{C}$): IR (Nujol) $v_{\max } 3628,3414,3275$, and $1551 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{80} \mathrm{H}_{77} \mathrm{NO}_{10}$: C, 79.25; H, 6.40; N, 1.16. Found: C, 77.78; H, 6.56; N, 1.23. A 2:1 inclusion compound (4ce(2:1)) (col orless needles, 79% yield, mp $112-115^{\circ} \mathrm{C}$): IR (Nujol) $v_{\text {max }}$ 3629, 3414, 3280, and $1550 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{82} \mathrm{H}_{81} \mathrm{NO}_{10}$: C, 79.39; H, 6.58; N, 1.13. Found: C, 77.20; H, 6.70; N, 1.03 . A 1:1 inclusion compound (4cf) (colorless needles, 77% yield, $\mathrm{mp} 112-115^{\circ} \mathrm{C}$): IR (Nujol) $v_{\max } 3256,3148$, and $1621 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{52} \mathrm{H}_{49} \mathrm{NO}_{6}$: C, 79.67; $\mathrm{H}, 6.30 ; \mathrm{N}, 1.79$. Found: C, 79.82; H, 6.50; N, 1.76 .

Photocyclization of 1 to N-Alkyl-1,2,3,4-tetrahydro-2-oxoquinolino[2,1-b]-trans-dihydrofuran (2) in 4. A suspension of powdered $\mathbf{4 b b}(1.70 \mathrm{~g}, 2.45 \mathrm{mmol})$ in water (120 mL) containing hexadecyltrimethylammonium bromide (0.1 g) as a surfactant was irradiated under stirring for 40 h with a 100-W high-pressure Hg Iamp. The reaction mixture was filtered, dried, and chromatographed on silica gel, using AcOEt/toluene (1:10) as an eluent to give (3S,4R)-(-)-N-methyl-1,2,3,4-tetrahydro-2-oxoquinolino[2,1-b]-trans-dihydrofuran (2b) in 8% ee as a col orless oil ($0.123 \mathrm{~g}, 25 \%$ yield, $[\alpha]_{\mathrm{D}}-30^{\circ}$ (c 0.7, MeOH)): IR (Nujol) $\nu_{\max } 1710 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 3.41(\mathrm{~s}, 3 \mathrm{H}), 4.18(\mathrm{~d}, \mathrm{~J}=18.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, \mathrm{~J}=18.6 \mathrm{~Hz}$, 1H), $5.68(\mathrm{q}, 1 \mathrm{H}), 6.67(\mathrm{t}, 1 \mathrm{H}), 7.05-7.34(\mathrm{~m}, 4 \mathrm{H})$. The optical purity of (-)-2b was determined by HPLC on the chiral solid phase, Chiralcel OD. By the same procedure, irradiation of 4cc for 120 h gave (3R,4S)-(+)-N-ethyl-1,2,3,4-tetrahydro-2-oxoquinolino[2,1-b]-trans-dihydrofuran (2c) in 99\% ee as a colorless oil (41% yield, $[\alpha]_{D}+232^{\circ}$ (c 0.4, MeOH)): IR (Nujol) $v_{\text {max }} 1700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.27(\mathrm{t}, 3 \mathrm{H}), 4.03(\mathrm{~m}, 2 \mathrm{H})$, $4.15(\mathrm{~d}, \mathrm{~J}=18 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, \mathrm{~J}=18 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{q}, 1 \mathrm{H})$, 7.08-7.33 ($\mathrm{m}, 4 \mathrm{H}$). The optical purity of (+)-2c was determined by HPLC on the chiral solid phase, Chiralcel OD. Irradiation of 4cd for 143 h gave (3R,4S)-(+)-N-Isopropyl-1,2,3,4-tetrahydro-2-oxoquinolino[3,1-b]-trans-dihydrofuran (2d) in 52% ee as a colorless oil (16% yield, $[\alpha]_{D}+99^{\circ}$ (c 0.5 , $\mathrm{MeOH})$): IR (Nujol) $\nu_{\text {max }} 1706 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.49$ (d, 3H), $1.61(\mathrm{~d}, 3 \mathrm{H}), 4.14(\mathrm{~s}, 2 \mathrm{H}), 4.70(\mathrm{~m}, 1 \mathrm{H}), 5.64(\mathrm{~d}, 1 \mathrm{H}), 6.66(\mathrm{q}$, $1 \mathrm{H}), 7.08-7.30(\mathrm{~m}, 4 \mathrm{H})$. The optical purity of $(+)-2 \mathrm{c}$ was determined by HPLC on the chiral solid phase, Chiralcel OD. Irradiation of 4ae for 96 h gave (3R,4S)-(+)-N-allyl-1,2,3,4-tetrahydro-2-oxoquinolino[2,1-b]-trans-dihydrofuran (2e) in 93% ee as col orless crystals (20% yield, $[\alpha]_{\mathrm{D}}+275^{\circ}$ (c 0.8, $\mathrm{MeOH})$): IR (Nujol) $v_{\max } 1706 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 4.21(\mathrm{~d}, \mathrm{~J}=$ $18.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, \mathrm{~J}=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~m}, 1 \mathrm{H}), 4.81(\mathrm{~m}$, $1 \mathrm{H}), 5.18(\mathrm{~m}, 1 \mathrm{H}), 5.69(\mathrm{~m}, 1 \mathrm{H}), 5.88(\mathrm{~m}, 1 \mathrm{H}), 6.68(\mathrm{t}, 1 \mathrm{H})$, $7.09(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~m}, 2 \mathrm{H})$. The optical purity of $(+)$-2e was determined by HPLC on the chiral solid phase, Chiracel OD. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2}$: C, 73.99; H, 5.77; N, 6.16. Found: C, 73.74; H,5.86; N,5.88. Irradiation of 4be(1:1) for 77 h gave (-)-2e in 96% ee as colorless crystals (50% yield, $[\alpha]_{D}-283^{\circ}$ (c $0.5, \mathrm{MeOH}$)). Irradiation of $\mathbf{4 b e}(\mathbf{2 : 1})$ for 48 h gave (+)-2e in 98% ee as colorless crystals (86% yield, $[\alpha]_{\mathrm{D}}+314^{\circ}$ (c 0.4 , $\mathrm{MeOH})$). Irradiation of 4ce for 50 h gave (+)-2e in 98% ee as colorless crystals (77% yield, $[\alpha]_{D}-283^{\circ}$ (c 0.5, MeOH)). Irradiation of 4cf for 120 h gave (3S,4R)-(-)-N-benzyl-1,2,3,4-tetrahydro-2-oxoquinolino[2,1-b]-trans-dihydrofuran (2f) in 98% ee as colorless crystals (72% yield, [$\alpha]_{D}$ -230° (c $0.6, \mathrm{MeOH}$)): IR (Nujol) $v_{\max } 1696 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR δ 4.28 (d, J $=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, \mathrm{~J}=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}$, $\mathrm{J}=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~m}, 1 \mathrm{H}), 6.71$ (d, 1H), 6.97-7.33 (m,9H). The optical purity of (-)-2f was determined by HPLC on the chiral solid phase, Chiralpak AS. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{2}$: C, 77.96; $\mathrm{H}, 5.45 ; \mathrm{N}, 5.05$. Found: C, 78.10; H, 5.58; N, 4.71.

Preparation of 4 by Mixing Method. As an example, 4ce(1:1) was prepared by mixing powdered $3 \mathrm{c}(1.38 \mathrm{~g}, 2.73 \mathrm{mmol})$ and $\mathbf{l e}(0.62 \mathrm{~g}, 2.73 \mathrm{mmol})$ and liquid paraffin (0.1 g) for 1 h at room temperature, using a planetary micro mill, Fritsch pulverizette 7 .

Photoreaction of 4ce(1:1) Prepared by Mixing Method. A suspension of powdered 4 ce $(2.00 \mathrm{~g}, 2.73 \mathrm{mmol})$ in water $(120 \mathrm{~mL})$ containing hexadecyltrimethylammonium bromide (0.1 g) as a surfactant was irradiated under stirring for 40 h with 100-W high-pressure Hg lamp. The reaction mixture was filtered, dried, and chromatographed on silica gel using AcOEt/ toluene (1:10) as an eluent to give (-)-2e in 49\% ee as col orless crystals ($0.09 \mathrm{~g}, 16 \%$ yield, $[\alpha]_{\mathrm{D}}-135^{\circ}$ (c $\left.0.4, \mathrm{MeOH}\right)$). Photoreaction of $\mathbf{4 c e}(\mathbf{1}: \mathbf{1})$ prepared by mixing in the absence of liquid paraffin also gave an identical (-)-2e.

Structure Determination of 4be(1:1). The integrated X-ray diffraction intensity from the single crystal of 4be(1:1)
was collected by a four-circle diffractometer. The crystal structure was solved by direct methods, SI R92, ${ }^{6}$ and refined by the full matrix least-squares method, SHELX-97. ${ }^{7}$ M olecular and crystal structures were plotted by ORTEP-III. ${ }^{8}$

Supporting Information Available: Tables of data and details of crystal structure determinations, anisotropic displacement parameters, and bond lengths and angles.

J O982099M

(6) Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camalli, M. J. Appl. Crystallogr. 1994, 27, 435.
(7) Sheldrick, G. M. SHELX97 1997: Program for the Refinement of Crystal Structures; University of Göttingen: Göttingen, Germany.
(8) Burnett, M. N.; J ohnson, C. K. ORTEP-III 1996: Oak Ridge Thermal Ellipsoid Plot Program for Crystal Structure Illustrations; Oak Ridge National Laboratory Report ORNL-6895.

[^0]: ${ }^{\dagger}$ Ehime University.
 \ddagger Nagoya Institute of Technology.
 § Hokkaido University of Education at Hakodate.
 (1) Bates, R. B.; Kane, V. V.; Martin, A. R.; Mujumdar, R. B.; Ortega, R.; Hatanaka, Y.; San-nohe, K.; Kanaoka, Y. J . Org. Chem. 1987, 52, 3178.
 (2) Seebach, D.; Beck, A. K.; Imwinkelried, R.; Roggo, S.; Wannacott, A. Hel. Chim. Acta 1987, 70, 954. Toda, F.; Tanaka, K. Tetrahedron Lett. 1988, 29, 551.
 (3) A preliminary report on the present work has appeared: Toda, F.; Miyamoto, H.; K anemoto, K. J. Org. Chem. 1996, 61, 6490.

[^1]: (4) Toda, F.; Miyamoto, H.; Kikuchi, S.; Kuroda, R.; Nagami, F. J . Am. Chem. Soc. 1996, 118, 11315.

